生物成像用超快激光器

Spectra-Physics 是生物成像用超快激光器
的最佳供应商、已装机数千台激光器设备。
Spectra-Physics 为高端多光子和多种成像技术提供高度可靠的、性能领先的飞秒激光器,并确保激光器能够常年正常运转。

小鼠大脑皮层
的多色三维图像

适用于生物成像的超快激光器产品

产品说明波长脉冲宽度波长转换器
可调谐超快激光器  
new
InSight X3
超宽调谐、内置色散补偿、多光子成像用飞秒激光器
 
Wavelength
680–1300 nm
Pulse Width
<120 fs
Wavelength Converters
不适用
 
Mai Tai DeepSee
宽调谐范围、内置色散补偿、高峰值功率飞秒激光器
 
Wavelength
690–1040 nm
710–920 nm
710–950 nm
710–990 nm
Pulse Width
<70, 100 fs
<80 fs
<80 fs
<70 fs
Wavelength Converters
 
Mai Tai
宽调谐范围、短脉冲飞秒激光器
 
Wavelength
690–1040 nm
710–920 nm
710–950 nm
710–990 nm
Pulse Width
<100 fs
<80 fs
<80 fs
<70 fs
 
固定波长超快激光器  
new
Spirit
设定高精度飞秒加工的新标准
 
Wavelength
515 nm
520 nm
1030 nm
1040 nm
Pulse Width
<400 fs
Wavelength Converters
 
HighQ-2
一体式固定波长飞秒激光器
 
Wavelength
522、 1045 nm
Pulse Width
<250 fs
Wavelength Converters
内置
 
femtoTrain
一体式高功率飞秒激光器
 
Wavelength
1040 nm
Pulse Width
<220 fs
Wavelength Converters
不适用
 

生物成像用超快激光器应用

Mouse brain, hippocampus region; imaged with femtoTrain™.
Courtesy of Sabine Scheibe, LMU Munich and Tilman Franke, FEI Munich GmbH



Mouse barrel cortex, after clearing.
Courtesy of Gabriel Jones, Steven Petrou, University of Melbourne, Australia



Hippocampus CA3 pyramidal neuron; imaged with InSight® DS+™.
Courtesy of Karina Alvina, Albert Einstein College of Medicine



Multicolor image of live mouse brain; imaged with InSight DS+.
Courtesy of Naoki Honkura and Takeshi Imamura, Ehime University Graduate School of Medicine



Zebrafish embryo brain development, CFP, YFP, mCherry imaged at 860 nm and 1041 nm with InSight® DS+™.
Courtesy of Dr. Nadine Peyrieras, CNRS, Gif sur Yvette, France and LaVision Biotec



Maximum intensity projection of zebrafish embryo development, taken from both sides over 8 hours; imaged with InSight DS+.
Courtesy of Dr. Nadine Peyrieras, CNRS, Gif sur Yvette, France and LaVision Biotec



Z-stack of transgenic zebrafish larvae, labeled with GFP and CFP; imaged with Mai Tai® DeepSee™.
Courtesy of Dr. Rachel Wong, University of Washington, Seattle



Transgenic zebrafish embryo retina, revealing various neuronal cell types, imaged at 927 nm and 1041 nm with InSight DS+.
Courtesy of Dr. Xana Almeida, University of Cambridge, UK



Lymph vessel; imaged with InSight® DS+™.
Courtesy of Dr. Cameron Newell, Monash, University, Melbourne, Australia



Continuous tracking of T cells (tagged with CMPTX, imaged at 1080 nm) and dendritic cells
(tagged with GFP, imaged at 925 nm) interacting in mouse skin over several hours; imaged with InSight DS+.
Courtesy of Dr. Michael Kuligowski, Centenary Institute of Cancer Research and Cell Biology, Sydney, Australia



Continuous tracking of T cells (tagged with CMPTX, imaged at 1080 nm) and dendritic cells
(tagged with GFP, imaged at 925 nm) interacting in mouse skin over several hours; imaged with InSight DS+.
Courtesy of Dr. Michael Kuligowski, Centenary Institute of Cancer Research and Cell Biology, Sydney, Australia



Mouse ear, showing collagen (blue) and GFP labelled T cells (green); imaged with Mai Tai® DeepSee™.
Courtesy of Dr. Claudio Vinegoni, Mass General Hospital, Harvard University



Retinal ganglion cell; imaged with Mai Tai.
Courtesy of Dr. Gregory Schwartz, Northwestern University



Chemically cleared mouse heart total depth of 3.5 mm; imaged with Mai Tai DeepSee.
Courtesy of Mayandi Sivaguru, University of Illinois Urbana Champaign and Sakthivel Sadayappan, Loyola University, Chicago



Human meibomian gland, CARS imaging the lipid rich meibocytes and SHG visualizing the surrounding collagen;
acquired with InSight® DS+™.
Courtesy of Dr. Eric Potma, UC Irvine



SRS image of fatty liver, pump 802 nm and Stokes at 1040 nm; acquired with InSight DS+.
Courtesy of Dr. Ji-XIn Cheng, Purdue University



SRS image of spinal cord, pump 802 nm and Stokes at 1040 nm; acquired with InSight DS+.
Courtesy of Dr. Ji-XIn Cheng, Purdue University



CARS Z-stack of C.Elegans worm, visualizing lipids 19.
Courtesy of Dr. Daewon Moon and Dr. Hyunmin Kim, DGIST Daegu Gyeongbuk Institute of Science and Technology (DGIST)



CARS and MPEF imaging of C. Elegans, neuron cells labelled with GFP, lipid droplets revealed with CARS.
Courtesy of Dr. Daewon Moon and Dr. Hyunmin Kim, DGIST Daegu Gyeongbuk Institute of Science and Technology (DGIST)



Zebrafish embryo (6 hours post fertilization) using label free THG at 1140 nm; imaged with InSight® DS+™.
Courtesy of Dr. Nadine Peyrieras, CNRS, Gif sur Yvette, France



Mouse blood vessel wall, SHG and multiphoton excited fluorescence imaging with HighQ-2™.
Courtesy of Dr. Marc van Zandvoort, Maastrich University



Mouse mammary gland, label free image of collagen (SHG, magenta) and adipocytes (THG, yellow), imaged with InSight DS+™.
Courtesy of Dr. Marie Irondelle, Institut Curie/CNRS, Paris, France



3D images from a mouse brain cerebellum extending 1 mm deep into the tissue acquired via 3PF (left)
and THG (right) microscopy at 1.3 μm using a Spirit laser with a Spirit-NOPA.
Courtesy of Chris Xu, with permission from SPIE Publications: Wang, et. al., “In vivo three-photon
imaging of deep cerebellum,” Proc. SPIE:  Multiphoton Microscopy in the Biomedical Sciences
XVIII, vol. 10498, 2018.

Mouse kidney, with CARS (red), SHG (blue) and autofluorescence (green); imaged with Mai Tai® HP plus Inspire™ OPO.
Courtesy of Dr. Eric Potma, UC Irvine, CA



C. elegans, with CARS mapping out lipid rich areas and two-photon excited fluorescence from GFP and dsRed;
imaged with InSight® DS+™.
Courtesy of Dr. Eric Potma, UC Irvine, CA